Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 141, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500187

RESUMO

BACKGROUND: Wild deer populations utilizing livestock grazing areas risk cross-species transmission of gastrointestinal nematode parasites (GINs), including GINs with anthelmintic resistance (AR) traits. Wild deer have been shown to carry problematic GIN species such as Haemonchus contortus and Trichostrongylus species in the UK, but the presence of livestock GINs in Northern Ireland deer populations is unknown. Also, is it not known whether AR traits exist among GINs of deer such as Ostertagia leptospicularis and Spiculopteragia asymmetrica in pastureland where anthelmintics are heavily used. METHODS: Adult-stage GIN samples were retrieved from Northern Irish wild fallow deer abomasa. Individual specimens were subject to a species-specific PCR analysis for common sheep and cattle GIN species with ITS-2 sequence analysis to validate species identities. In addition, the beta-tubulin gene was subject to sequencing to identify benzimidazole (BZ) resistance markers. RESULTS: ITS-2 sequencing revealed O. leptospicularis and S. asymmetrica, but species-specific PCR yielded false-positive hits for H. contortus, Teladorsagia circimcincta, Trichostrongylus axei, T. colubriformis, T. vitrinus and Ostertagia ostertagi. For beta-tubulin, O. leptospicularis and S. asymmetrica yielded species-specific sequences at the E198 codon, but no resistance markers were identified in either species at positions 167, 198 or 200 of the coding region. DISCUSSION: From this report, no GIN species of significance in livestock were identified among Northern Ireland fallow deer. However, false-positive PCR hits for sheep and cattle-associated GINs is concerning as the presence of deer species in livestock areas could impact both deer and livestock diagnostics and lead to overestimation of both GIN burden in deer and the role as of deer as drivers of these pathogens. ITS-2 sequences from both O. leptospicularis and S. asymmetrica show minor sequence variations to geographically distinct isolates. AR has been noted among GINs of deer but molecular analyses are lacking for GINs of wildlife. In producing the first beta-tubulin sequences for both O. leptospicularis and S. asymmetrica, we report no BZ resistance in this cohort. CONCLUSIONS: This work contributes to genetic resources for wildlife species and considers the implications of such species when performing livestock GIN diagnostics.


Assuntos
Anti-Helmínticos , Cervos , Nematoides , Trichostrongyloidea , Humanos , Animais , Bovinos , Ovinos , Cervos/parasitologia , Ostertagia/genética , Animais Selvagens , Gado , Tubulina (Proteína)/genética , Irlanda do Norte/epidemiologia , Trichostrongyloidea/genética , Anti-Helmínticos/uso terapêutico , Trichostrongylus
2.
Animals (Basel) ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38200878

RESUMO

Smallholder goat production plays a major role in rural livelihoods and food security in Malawi, but suffers from drastic and unpredictable production losses. While goat production is closely linked to small-scale local markets for slaughter and butchering, the perspectives of butchers and their potential as a source of animal health information are largely untapped. Butchers can provide insights into goat health status at slaughter as well as issues that go unseen before slaughter, such as the presence of indigestible foreign bodies (IFBs). IFBs include solid materials such as plastics and hardware (metals, stones, and other hard objects) that cause foreign body syndrome and can lead to impaction, oedema, malnutrition, and death. To estimate the presence of IFBs, 150 market stand butchers were surveyed across five districts in Malawi, focusing on a distinction between hardware and single-use plastics, which are still widely present in Malawi despite bans on production. Most butchers found plastic IFBs (80.7%), with over half (56.7%) reporting plastic IFBs recently among the past five slaughters. Hardware IFBs were less common, reported by 45.3% of butchers. While some butchers commented on the impact of IFBs on meat quality metrics ex-post, the majority observed no differences. While butchers unanimously considered health to be an important characteristic when sourcing goats, 70.7% consider injury status to be less important or not important. Overall, this study highlights the issue of anthropogenic waste pollution on goat production in Malawi and demonstrates the potential for the surveillance of goat health at market.

3.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367372

RESUMO

In mosquitoes, the utilization of RNAi for functional genetics is widespread, usually mediated through introduced double-stranded RNAs (dsRNAs) with sequence identity to a gene of interest. However, RNAi in mosquitoes is often hampered by inconsistencies in target gene knockdown between experimental setups. While the core RNAi pathway is known to function in most mosquito strains, the uptake and biodistribution of dsRNAs across different mosquito species and life stages have yet to be extensively explored as a source of variation in RNAi experiments. To better understand mosquito-RNAi dynamics, the biodistribution of a dsRNA to a heterologous gene, LacZ (iLacZ), was tracked following various routes of exposure in the larval and adult stages of Aedes aegypti, Anopheles gambiae, and Culex pipiens. iLacZ was largely limited to the gut lumen when exposed per os, or to the cuticle when topically applied, but spread through the hemocoel when injected. Uptake of dsRNA was noted in a subset of cells including: hemocytes, pericardial cells of the dorsal vessel, ovarian follicles, and ganglia of the ventral nerve cord. These cell types are all known to undergo phagocytosis, pinocytosis, or both, and as such may actively take up RNAi triggers. In Ae. aegypti, iLacZ was detected for up to one week post exposure by Northern blotting, but uptake and degradation drastically differed across tissues. The results presented here reveal that the uptake of RNAi triggers is distinct and specific to the cell type in vivo.

4.
Parasit Vectors ; 16(1): 216, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386642

RESUMO

BACKGROUND: Veterinary diagnostics aid intervention strategies, track zoonoses, and direct selective breeding programs in livestock. In ruminants, gastrointestinal nematode (GIN) parasites are a major cause of production losses, but morphologically similar species limit our understanding of how specific GIN co-infections impact health in resource-limited settings. To estimate the presence and relative abundance of GINs and other helminths at the species level, we sought to develop a low-cost and low-resource molecular toolkit applied to goats from rural Malawi smallholdings. METHODS: Goats were subjected to health scoring and faecal sampling on smallholdings in Lilongwe district, Malawi. Infection intensities were estimated by faecal nematode egg counts with a faecal subsample desiccated for DNA analysis. Two DNA extraction methods were tested (low-resource magbead kit vs high-resource spin-column kit), with resulting DNA screened by endpoint polymerase chain reaction (PCR), semi-quantitative PCR, quantitative PCR (qPCR), high-resolution melt curve analysis (HRMC), and 'nemabiome' internal transcribed spacer 2 (ITS-2) amplicon sequencing. RESULTS: Both DNA isolation methods yielded comparable results despite poorer DNA purity and faecal contaminant carryover from the low-resource magbead method. GINs were detected in 100% of samples regardless of infection intensity. Co-infections with GINs and coccidia (Eimeria spp.) were present in most goats, with GIN populations dominated by Haemonchus contortus, Trichostrongylus colubriformis, Trichostrongylus axei, and Oesophagostomum columbianum. Both multiplex PCR and qPCR were highly predictive of GIN species proportions obtained using nemabiome amplicon sequencing; however, HRMC was less reliable than PCR in predicting the presence of particular species. CONCLUSIONS: These data represent the first 'nemabiome' sequencing of GINs from naturally infected smallholder goats in Africa and show the variable nature of GIN co-infections between individual animals. A similar level of granularity was detected by semi-quantitative PCR methods, which provided an accurate summary of species composition. Assessing GIN co-infections is therefore possible using cost-efficient low-resource DNA extraction and PCR approaches that can increase the capacity of molecular resources in areas where sequencing platforms are not available; and also open the door to affordable molecular GIN diagnostics. Given the diverse nature of infections in livestock and wildlife, these approaches have potential for disease surveillance in other areas.


Assuntos
Coinfecção , Doenças Transmissíveis , Gastroenteropatias , Haemonchus , Infecções por Nematoides , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Cabras , Infecções por Nematoides/diagnóstico , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/veterinária , Gastroenteropatias/epidemiologia , Gastroenteropatias/veterinária , Trichostrongylus , Malaui/epidemiologia
5.
Elife ; 122023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318129

RESUMO

Nematode excretory-secretory (ES) products are essential for the establishment and maintenance of infections in mammals and are valued as therapeutic and diagnostic targets. While parasite effector proteins contribute to host immune evasion and anthelmintics have been shown to modulate secretory behaviors, little is known about the cellular origins of ES products or the tissue distributions of drug targets. We leveraged single-cell approaches in the human parasite Brugia malayi to generate an annotated cell expression atlas of microfilariae. We show that prominent antigens are transcriptionally derived from both secretory and non-secretory cell and tissue types, and anthelmintic targets display distinct expression patterns across neuronal, muscular, and other cell types. While the major classes of anthelmintics do not affect the viability of isolated cells at pharmacological concentrations, we observe cell-specific transcriptional shifts in response to ivermectin. Finally, we introduce a microfilariae cell culture model to enable future functional studies of parasitic nematode cells. We expect these methods to be readily adaptable to other parasitic nematode species and stages.


Assuntos
Anti-Helmínticos , Brugia Malayi , Nematoides , Parasitos , Animais , Humanos , Anti-Helmínticos/farmacologia , Ivermectina/farmacologia , Mamíferos
6.
Antimicrob Agents Chemother ; 67(1): e0118822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602350

RESUMO

The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.


Assuntos
Anti-Helmínticos , Brugia Malayi , Proteínas de Caenorhabditis elegans , Nematoides , Animais , Humanos , Brugia Malayi/genética , Brugia Malayi/metabolismo , Antiparasitários , Anti-Helmínticos/farmacologia , Receptores Muscarínicos/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo
7.
Vet Rec ; 192(1): e2341, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36352759

RESUMO

BACKGROUND: Toxocarosis is a globally distributed zoonotic disease, but sources of infection are not well documented over large geographical scales. To determine levels of environmental contamination, soil from 142 parks and recreational areas across the UK and Ireland was assessed for the presence of Toxocara. METHODS: Toxocara ova (eggs) were isolated from soil samples by sieving and flotation and then enumerated. Individual eggs were isolated and imaged, and a subset was characterised by species-specific PCR and Sanger sequencing. RESULTS: Characteristic Toxocara-type eggs were found in 86.6% of parks, with an average of 2.1 eggs per 50 g of topsoil. Representative eggs were confirmed as Toxocara canis by Sanger sequencing, with many eggs containing developed larvae, hence being viable and potentially infective. Positive samples were more common, and egg density was higher, in parks with greater perceived levels of dog fouling. LIMITATIONS: Samples were collected at a single timepoint and with limited spatial mapping within parks. Further study is needed to discern spatiotemporal differences within parks and recreational areas. CONCLUSION: Toxocara is widespread in soil in public parks, indicating a need for further efforts to reduce egg shedding from pet dogs. Standardised methods and large-scale surveys are required to evaluate risk factors for egg presence and the impact of interventions.


Assuntos
Doenças do Cão , Toxocaríase , Animais , Cães , Toxocara , Solo , Irlanda/epidemiologia , Toxocaríase/epidemiologia , Reino Unido/epidemiologia , Contagem de Ovos de Parasitas/veterinária , Fezes , Doenças do Cão/epidemiologia
8.
Biol Lett ; 18(5): 20220057, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506237

RESUMO

Wild ruminants are susceptible to infection from generalist helminth species, which can also infect domestic ruminants. A better understanding is required of the conditions under which wild ruminants can act as a source of helminths (including anthelmintic-resistant genotypes) for domestic ruminants, and vice versa, with the added possibility that wildlife could act as refugia for drug-susceptible genotypes and hence buffer the spread and development of resistance. Helminth infections cause significant productivity losses in domestic ruminants and a growing resistance to all classes of anthelmintic drug escalates concerns around helminth infection in the livestock industry. Previous research demonstrates that drug-resistant strains of the pathogenic nematode Haemonchus contortus can be transmitted between wild and domestic ruminants, and that gastro-intestinal nematode infections are more intense in wild ruminants within areas of high livestock density. In this article, the factors likely to influence the role of wild ruminants in helminth infections and anthelmintic resistance in livestock are considered, including host population movement across heterogeneous landscapes, and the effects of climate and environment on parasite dynamics. Methods of predicting and validating suspected drivers of helminth transmission in this context are considered based on advances in predictive modelling and molecular tools.


Assuntos
Anti-Helmínticos , Haemonchus , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Haemonchus/genética , Gado , Ruminantes
9.
PLoS Pathog ; 18(4): e1010399, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35390105

RESUMO

Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.


Assuntos
Anti-Infecciosos , Brugia Malayi , Filariose Linfática , Parasitos , Vacinas , Animais , Anti-Infecciosos/farmacologia , Antiparasitários/farmacologia , Brugia Malayi/genética , Humanos , Parasitos/genética , Transcriptoma
10.
Front Insect Sci ; 2: 1073308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468807

RESUMO

Oogenesis in flies manifests as a carefully orchestrated cascade of developmental gates and growth events, punctuated by programmed cell death (PCD) and follicular resorption events. In anautogenous mosquitoes, a blood meal stimulates growth of primary follicles, but the timing of developmental stages is species-specific, and few species have been characterized. Here, we characterize the first gonotrophic cycle of oogenesis in Aedes triseriatus (Diptera: Culicidae), the principal vector of La Crosse Virus (LACV), a major cause of pediatric encephalitis in North America. We note significant differences in the timing and appearance of developmental stages from previous studies of other mosquito species, particularly Aedes aegypti. We also describe the appearance and timing of PCD events including atresia, nurse cell death, and follicular epithelium death and show that the majority of follicular epithelium cells do not undergo apoptosis during oogenesis but persist in the ovariole at least until the second gonotrophic cycle. This thorough characterization of oogenesis and PCD in Ae. triseriatus, through which LACV must persist in order to achieve filial infection, also serves as a baseline to study host-pathogen interactions during transovarial transmission.

11.
PLoS Negl Trop Dis ; 14(11): e0008869, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33196647

RESUMO

Filarial parasitic nematodes (Filarioidea) cause substantial disease burden to humans and animals around the world. Recently there has been a coordinated global effort to generate, annotate, and curate genomic data from nematode species of medical and veterinary importance. This has resulted in two chromosome-level assemblies (Brugia malayi and Onchocerca volvulus) and 11 additional draft genomes from Filarioidea. These reference assemblies facilitate comparative genomics to explore basic helminth biology and prioritize new drug and vaccine targets. While the continual improvement of genome contiguity and completeness advances these goals, experimental functional annotation of genes is often hindered by poor gene models. Short-read RNA sequencing data and expressed sequence tags, in cooperation with ab initio prediction algorithms, are employed for gene prediction, but these can result in missing clade-specific genes, fragmented models, imperfect mapping of gene ends, and lack of isoform resolution. Long-read RNA sequencing can overcome these drawbacks and greatly improve gene model quality. Here, we present Iso-Seq data for B. malayi and Dirofilaria immitis, etiological agents of lymphatic filariasis and canine heartworm disease, respectively. These data cover approximately half of the known coding genomes and substantially improve gene models by extending untranslated regions, cataloging novel splice junctions from novel isoforms, and correcting mispredicted junctions. Furthermore, we validated computationally predicted operons, manually curated new operons, and merged fragmented gene models. We carried out analyses of poly(A) tails in both species, leading to the identification of non-canonical poly(A) signals. Finally, we prioritized and assessed known and putative anthelmintic targets, correcting or validating gene models for molecular cloning and target-based anthelmintic screening efforts. Overall, these data significantly improve the catalog of gene models for two important parasites, and they demonstrate how long-read RNA sequencing should be prioritized for ongoing improvement of parasitic nematode genome assemblies.


Assuntos
Brugia Malayi/genética , Genoma Helmíntico/genética , Proteínas de Helminto/genética , Onchocerca volvulus/genética , Óperon/genética , Animais , Sequência de Bases , Feminino , Genômica , Humanos , Masculino , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
12.
PLoS Biol ; 18(6): e3000723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511224

RESUMO

Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.


Assuntos
Brugia Malayi/genética , Células Quimiorreceptoras/metabolismo , Culicidae/parasitologia , Filariose Linfática/parasitologia , Variação Genética , Animais , Caenorhabditis elegans/fisiologia , Quimiotaxia , Genoma , Proteínas de Helminto/metabolismo , Larva , Estágios do Ciclo de Vida , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo , Temperatura
13.
Acta Trop ; 191: 221-227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30633897

RESUMO

Toxic Sugar Baits (TSBs) are an inexpensive and field-applicable approach to deliver a variety of insecticides to sugar-seeking mosquitoes. We reasoned that carbohydrate chemistry could alter the performance and efficacy of TSBs. In this study, the uptake, distribution, and survival of female Aedes aegypti provided with twelve different aqueous sugar meals was recorded. Sucrose, a standard control sugar used in mosquito rearing, is always diverted to the ventral diverticulum upon ingestion; but other sugars that might be found in nectar (e.g., maltose, mannose, and raffinose) dispersed to both the diverticulum and midgut. Sugar meals composed of arabinose, lactose, or cellobiose significantly reduced survival of Ae. aegypti compared to sucrose controls, with or without the addition of boric acid insecticide. The addition of arabinose to a TSB comprised of sucrose and boric acid reduced the survival of Ae. aegypti even when non-toxic sugar meals were readily available. In choice assays, Ae. aegypti were equally likely to feed on TSBs containing arabinose despite the toxicity associated with arabinose ingestion. TSBs typically contain broad spectrum insecticides; insecticidal RNA species that induce species-specific gene silencing are a potential alternative. To assess the potential of RNA delivery in a TSB, biodistribution of double-stranded RNA (dsRNA), was tracked after per os delivery in different sugar meals. None of the sugars tested facilitated uptake of dsRNA into midgut epithelia or other tissues. Overall, sourcing sugar baits from sources containing sugars with toxic properties may improve TSB efficacy in the field.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/toxicidade , Longevidade/efeitos dos fármacos , Controle de Mosquitos/métodos , Açúcares/metabolismo , Animais , Feminino
14.
Insects ; 8(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067782

RESUMO

RNA interference (RNAi) is a powerful tool to silence endogenous mosquito and mosquito-borne pathogen genes in vivo. As the number of studies utilizing RNAi in basic research grows, so too does the arsenal of physiological targets that can be developed into products that interrupt mosquito life cycles and behaviors and, thereby, relieve the burden of mosquitoes on human health and well-being. As this technology becomes more viable for use in beneficial and pest insect management in agricultural settings, it is exciting to consider its role in public health entomology. Existing and burgeoning strategies for insecticide delivery could be adapted to function as RNAi trigger delivery systems and thereby expedite transformation of RNAi from the lab to the field for mosquito control. Taken together, development of RNAi-based vector and pathogen management techniques & strategies are within reach. That said, tools for successful RNAi design, studies exploring RNAi in the context of vector control, and studies demonstrating field efficacy of RNAi trigger delivery have yet to be honed and/or developed for mosquito control.

15.
PLoS Negl Trop Dis ; 9(5): e0003735, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25996390

RESUMO

Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects.


Assuntos
Anopheles/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Nanopartículas/toxicidade , Animais , Anopheles/genética , Transporte Biológico , Portadores de Fármacos/farmacocinética , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/toxicidade , Inseticidas/farmacologia , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Interferência de RNA , RNA Interferente Pequeno/farmacologia
16.
PLoS Negl Trop Dis ; 9(5): e0003745, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25996505

RESUMO

BACKGROUND: Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract. CONCLUSIONS/SIGNIFICANCE: Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes for mosquito control.


Assuntos
Anopheles/metabolismo , Portadores de Fármacos/farmacocinética , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Inseticidas/farmacologia , Nanopartículas/metabolismo , Animais , Vetores Artrópodes , Corantes Fluorescentes , Cinética , Microscopia de Fluorescência , Nanoconjugados , Coloração e Rotulagem
17.
J Invertebr Pathol ; 114(2): 186-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932976

RESUMO

The recently characterized small RNAs provide a new paradigm for physiological studies. These molecules have been shown to be integral players in processes as diverse as development and innate immunity against bacteria and viruses in eukaryotes. Several of the well-characterized small RNAs including small interfering RNAs, microRNAs and PIWI-interacting RNAs are emerging as important players in mediating arthropod host-virus interactions. Understanding the role of small RNAs in arthropod host-virus molecular interactions will facilitate manipulation of these pathways for both management of arthropod pests of agricultural and medical importance, and for protection of beneficial arthropods such as honey bees and shrimp. This review highlights recent research on the role of small RNAs in arthropod host-virus interactions with reference to other host-pathogen systems.


Assuntos
Artrópodes/virologia , Vírus de DNA , Interações Hospedeiro-Patógeno/genética , Vírus de RNA , Pequeno RNA não Traduzido , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...